Partial Molar Volumes of C_2 -- C_5 Normal and Branched Nitriles in Dilute Sulfolane Solutions at 30 °C

Liliana Janneili,* Michele Pansini, and Roberto Jalenti

Thermodynamics Section, The Institute of Chemistry, Faculty of Engineering, The University of Naples, Naples, Italy

Partial molar volumes, \bar{v}_2 , of acetonitrile, propionitrile, butyronitrile, valeronitrile, 2-methylpropionitrile, and 2,2-dimethylpropionitrile were determined in dilute suifolane solutions, at 30 °C. Data were correlated with van der Waals volumes, v_w , calculated by thermal data, by an improved method proposed by one of us. The empty volumes of molecules were calculated, for the six nitriles, in the presence ($\bar{v}_2 - v_w$) and in the absence ($V_2^\circ - v_w$) of the solvent and the relative extent of interactions under the two conditions was detected. Some regularities concerning group contributions to \bar{v}_2 were observed.

Introduction

This research was undertaken mainly with two aims: (a) First of all, we attempted to provide a new contribution for testing the adequacy of modern theories (1-6) in obtaining information about solute-solvent interactions starting from determinations of solute partial molar volume, \bar{v}_2 , in dilute solutions; (b) furthermore, as it concerns sulfolane solutions of several solutes, we attempted to supply further evidence for the supposition, drawn from our previous papers (7-10), that sulfolane plays the role of an almost inert diluent and this in spite of a fairly high dipole moment ($\mu = 4.8$ D) and a moderately high dielectric constant ($\epsilon^{30^\circ C} = 43.4$), presumably owing to the steric hindrance of its "globular" molecule (11, 12).

In the last 10 years several papers indeed (13, 17) appeared, which showed how specific solvent-solute and solutesolute interactions may be detected if it is assumed that the solute partial molar volume, \bar{v}_2 , includes an intrinsic volume, impenetrable to other molecules, and an empty volume which can be modified by interactions; the former may be equated to van der Waals volume, v_w , and the latter to the difference $\bar{v}_2 - v_w = v_e$. Moreover, Bondi proposed that v_w could be calculated by addition of the van der Waals increments for separate atoms or atomic groups making up the molecule and hence several methods (19-22) were proposed for calculating these increments for groups or atoms in different states of bonding. Simultaneously extensive research was developed concerning the determinations of the partial volumes, \bar{v}_2 , of solutes in aqueous and nonaqueous dilute solutions.

In this context we present herewith the results of our own determinations of \bar{v}_2 concerning dilute sulfolane solutions of normal and branched (C2-C5) alkane nitriles. Our choice of nitriles was guided by the regular variation of molecular size of selected nitriles, with increasing carbon atom number in the molecule, without inordinate alteration in molecular structure and the effective polarity of the nitrile [the dipole moment of the nitriles is 3.57 (normal), 3.65 (branched), and 3.44 (acetonitrile)]; on the other hand, the main conclusion which may be drawn from our previous determinations of thermodynamic and physical excess properties (23-26) (volumes, dielectric constants, and enthalpies) on mixing sulfolane and nitriles was that the structure of nitriles was but little disturbed by the presence of sulfolane. The selected nitriles were acetonitrile, propionitrile, butyronitrile, valeronitrile, 2-methylpropionitrile, and 2,2-dimethylpropionitrile; starting from capronitrile, solubility in sulfolane is lacking.

Experimental Section

Materials. Sulfolane, kindly supplied by Shell Italia, and nitriles were carefully purified and dried, as already reported (11, 23, 26).

The primary sources of component substances as well as the physical properties of purified materials are summarized in Table I and compared with the most reliable literature data.

Solutions were made by weight (reduced to mass) in a drybox and then stored in apt containers and protected from moisture as far as possible. The composition is stated as molality of nitrile (m); the nitrile is indicated as component 2.

Densities were measured with a DMA 60 digital precision density meter (Anton Paar, Austria) which was described elsewhere (9). The apparatus was calibrated with standard pure liquids. The calibration was repeated before and after each run. All measurements were carried out at a temperature of 303.16 \pm 0.001 K because sulfolane is a solid at temperatures below 301.61 K.

The working temperature was checked with a platinum resistance thermometer assembled with a G2 Müller Bridge and calibrated by NBS (U.S.A.). The maximum error on density did not exceed 1.10^{-5} g cm⁻³. For each binary system seven to nine measurements, at different molalities, were carried out. The selected molarities ranged between 0.000 90 and 0.0250 *m*.

Results

The experimental values of density, $d_{1,2}^{303,16K}$, and molalities, m, of the solutions of (C₂-C₅) normal and branched nitriles are summarized in Tables II-VII, where also the averages of the measured densities, $d_1^{303,16K}$, of the solvent, before and after each run, are reported. The volumes of solutions, $V_{1,2}$ are calculated from molalities and densities and the apparent molar volumes of the solve ϕ_2 , at ach composition, derived by using the following formula:

$$\phi_2 = (V_{1,2} - 1000/d_1)/m \tag{1}$$

In the molality range studied, ϕ_2 values do not show any trend to vary with dilution; therefore, smoothed equations of the type

$$V_{1,2} = (1000 / M_1) \bar{v}_1 + \bar{v}_2 m \tag{2}$$

allow us to calculate the partial molar volume \bar{v}_2 of the solute on the basis of a linear dependence of $V_{1,2}$ on molalities (in eq 2, M_1 is the molecular weight of the solvent and \bar{v}_1 the partial molar volume of the solvent, obtained by linear extrapolation of eq 2 at m = 0).

In each table (Tables II–VII) the corresponding smoothed equation (eq 2) is also reported, which reproduces experimental values of volume and hence of density in the limits of experimental error. For the sake of comparison \bar{v}_2 values, calculated by smoothed eq 2, are reported in each Table. The volume V_2° of pure substances, as well as the partial molar volumes, \bar{v}_2 , in dilute sulfolane solutions show a linear dependence on the number of CH₂ groups in the nitrile molecule, as shown in Figure 1. Therefore a constant group contribution may be assigned to CH₂ = 17.223 cm³ in the case of pure substances

Table I. Description and Physical Properties of Component Liquid	Table I.	Description and Ph	ysical Properties o	f Component Liquids
--	----------	--------------------	---------------------	---------------------

		purifi- cation	d^{303}	^{3.16K} /(g cm ⁻³)		mp/K
component		ref	obsd	ref	obsd	lit.
acetonitrile	J. T. Baker Chemical Co. (analyzed reagent)	23-26	0.771 11	0.771 20 (27)		
propionitrile	J. T. Baker Chemical Co. (analyzed reagent)	23-26	0.77166	0.771 96 (27)		
butyronitrile	Aldrich Chemical Co. (analyzed reagent)	23-26	0.78167	0.781 83 (27)		
valeronitrile	Aldrich Chemical Co. (analyzed reagent)	23-26	0.79072	0.790 32 (27)		
2-methyl- propionitrile	Aldrich Chemical Co. (analyzed reagent)	23-26	0.760 36	0.760 82 (26, 27)		
2,2-dimethyl- propionitrile	Aldrich Chemical Co. (analyzed reagent)	23-26	0.75200	0.75200 (26, 28)		
sulfolane	Shell Italia	11			301.61	301.61 (11) 301.78 (29)

Table II. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-Acetonitrile (2) Solutions^b and Apparent Molar Volumes (ϕ_2) and Partial Molar Volumes (\bar{v}_2) of Solute at 303.16 K

т	$d_{1,2}$	$V_{_{1,2}}$	ϕ_2	\overline{v}_{2}
0.000 00	1.26230	792.202		
0.010 96	1.26194	792.787	53.38	52.45
$0.014\ 13$	1.26184	792.953	53.15	52.43
0.01352	1.26186	792.921	53.18	52.44
0.02015	1.26166	793.262	52.61	52.11
0.02555	1.26152	793.526	51.82	51.43
0.02580	1.26149	793.553	52.36	51.98

^a $V_{1,2} = 792.212 + 51.94m$ (2). ^b Solvent = sulfolane; solute = acetonitrile.

Table III. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-Propionitrile (2) Solutions^b and Apparent Molar Volumes (ϕ_2) and Partial Molar Volumes (\overline{v}_2) of Solute at 303.16 K

m	<i>d</i> _{1,2}	V 1,2	φ ₂	\overline{v}_{2}
0.000 00	1.26228	792.217		
0.006 09	1.26202	792.646	70.44	70.11
0.008 90	1.26191	792.838	69.78	69.55
0.011~74	1.26179	793.037	69.85	69.68
0.01385	1.26170	793,186	69.96	69 .82
0.016 50	1.26159	793. 3 71	69.94	69.82
$0.018\ 61$	1.26151	793.513	69.64	69.53
0.02024	1.26144	793.629	6 9 .76	6 9 .66

^a $V_{1,2} = 792.219 + 69.70m$ (2). ^b Solvent = sulfolane; solute = propionitrile.

Table IV. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-Butyronitrile (2) Solutions^b and Apparent Molar Volumes (ϕ_1) and Partial Molar Volumes (\overline{v}_2) of Solute at 303.16 K

т	<i>d</i> _{1,2}	V 1,2	φ ₂	\overline{v}_{2}
0.000 00	1.262 28	792.217		
$0.001\ 21$	1.26222	792.321	85.95	80.17
0.00262	1.26213	792.455	90.84	88.17
0.004 94	1.26201	792.657	89.07	87.65
$0.014\ 52$	1.26154	793.477	86.76	86.29
0.016 98	1.26140	7 9 3.700	87.34	86.93
0.02068	1.26126	793.991	85.78	85.44
0.02069	1.26125	793.996	86.11	85.77

^a $V_{1,2} = 792.224 + 86.01m$ (2). ^b Solvent = sulfolane; solute = butyronitrile.

and = 16.70 cm³ in the case of dilute solutions of nitriles (data refer to T = 303.16 K).

Discussion

Current theories on solutions ascribe to first approximation spherical envelopes to molecular force fields, affording some-

Table V. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-Valeronitrile (2) Solutions^b and Apparent Molar Volumes (ϕ_2) and Partial Molar Volumes (\bar{v}_2) of Solute at 303.16 K

т	$d_{1,2}$	$V_{_{1,2}}$	ϕ_2	$\overline{\upsilon}_{2}$
0.000 00	1.26208	792.343		
0.000 94	1.26202	792.442	105.32	101.06
0.00249	1.26192	792.607	106.02	104.42
0.01272	1.26134	793.646	102.44	102.12
$0.014\ 44$	1.26124	793.822	102.42	102.15
0.01708	1.26109	794.091	102.34	102.11
0.01982	1.26092	794.378	102.67	102.47
0.023 26	1.26074	794.719	102.15	101.98

^a $V_{i,2} = 792.347 + 102.16m$ (2). ^b Solvent = sulfolane; solute = valeronitrile.

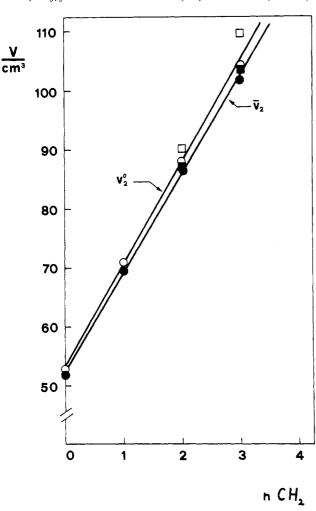
Table VI. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-2-Methylpropionitrile (2) Solutions⁶ and Apparent Molar Volumes (ϕ_2) and Partial Molar Volumes (\bar{w}_2) of Solute at 303.16 K

m	$d_{1,2}$	$V_{i,2}$	ϕ_2	Ū2
0.000 00	1.262 23	792.248		
0.00441	1.26200	792.635	87.76	87.53
$0.007\ 22$	1.26186	792.876	86.98	86.84
0.00949	1.26175	793.070	86.62	86.51
0.011 91	1.26162	793.284	86.99	86.90
0.01827	1.26130	793.834	86.81	86.75
0.02091	1.26116	794.067	86.99	86.94
0.02249	1.26108	794.204	86.97	86.93

^a $V_{1,2} = 792.249 + 86.90m$ (2). ^b Solvent = sulfolane; solute = 2-methylpropionitrile.

Table VII. Densities $(d_{1,2})$ and Total Volumes $(V_{1,2})^a$ of Sulfolane (1)-2,2-Dimethylpropionitrile (2) Solutions^b and Apparent Molar Volumes (ϕ_2) and Partial Molar Volumes (\overline{v}_2) of Solute at 303.16 K

т	$d_{1,2}$	$V_{_{1,2}}$	φ,	\overline{v}_{2}				
 0.000 00	1.26233	792.183						
0.004 91	1.26207	792.674	100.00	101.83				
$0.007\ 42$	1.26190	792.945	102.70	103.91				
0.009 83	1.26176	793.190	102.44	103.36				
0.01218	1.26160	793.444	103.53	104.27				
0.014 99	1.26144	793.732	103.34	103.94				
0.01752	1.26130	793.989	103.08	103.60				
0.02018	1.26111	794.284	104.11	104.56				
0.020 21	1.26114	794.264	102.97	103.41				


^a $V_{1,2} = 792.174 + 103.84m$ (2). ^b Solvent = sulfolane; solute = 2,2-dimethylpropionitrile.

times corrections for the nonsphericity in the case for example, of cylindrical molecules.

However, all theories agree with the statement that only empty volumes, v_{e} , are responsible for interactions of any kind

Table VIII. Molar Volumes of Pure Substances at 298.16 K, Vaporization Enthalpies at 298.16 K ($\Delta H_v^{295.16\text{K}}$) and at the Boiling Point (ΔH_v^{TB}), and van der Waals Volumes (v_w) for C₂-C₅ Normal and Branched Nitriles

					$v_{\mathbf{w}}/(\mathbf{cm}$	³ mol ⁻¹)
substance	$V_2^{\circ}/(\mathrm{cm}^3 \mathrm{mol}^{-1})$	$\Delta H_{\rm v}^{298,16{\rm K}}/({\rm kJ\ mol^{-1}})$	2	$M_v^{TB}/(kJ mol^{-1})$	eq 8	Bondi
CH,CN	52.868 (9)	32.94 (30, 31)	29.82	$(T_{\rm B} = 353.66 \text{ K}) (27)$	27.75	28.37
CH,CH,CN	70.928 (<i>2</i> 3)	36.03 (<i>30, 31</i>)	30,96	$(T_{B} = 370.57 \text{ K})(27)$	38.15	38.60
$CH_{1}(CH_{2}),CN$	87.890 (23)	39.33 (30, 31)	32.56	$(T_{\rm B} = 391.10 \text{ K})(27)$	48.08	48.83
CH,(CH,),CN	104.615 (<i>23</i>)	43.60 (<i>30, 31</i>)	33.39	$(T_{\rm B}^{\rm D} = 414.46 \text{ K})(27)$	59.24	59.08
(CH ₃),CHCN	90.355 (<i>26</i>)	37.11 (<i>30, 31</i>)		$(T_{\rm B} = 377.01 {\rm K})(27)$		48.83
(CH ₄),CCN	109.860 (26)	37.36 (30, 31)		$(T_{B} = 379.16 \text{ K})(28)$		59.08

Figure 1. Molar volumes V_2° (open circles) and partial molar volumes \bar{v}_2 (full circles) vs. the number of CH₂ groups for C₂-C₅ normal nitriles at 303.16 K; for the sake of comparison also molar volumes (open squares) and partial molar volumes (full squares) for branched nitriles are reported.

which result in an increase or shrinkage of empty volumes. Therefore, we prefer to disregard, for the present, any con-

sideration of the shape of the molecules and focus our efforts on calculating correct values of empty volumes of nitriles.

At this point we would like to underline an improved method (32) proposed by one of us for calculating van der waals volumes of molecules apart from theoretical considerations of the different states of bonding of component atoms. This method is based on the supposition that the vaporization enthalpy, ΔH_v^T , which includes all energetic effects of the structural destruction of a liquid, depends on the ratio v_w/v_e , which may be related to the packing density, v_w/V° , after King (13):

$$\Delta H_{v}^{T} = K(v_{w}/v_{e}) \tag{3}$$

On the other hand, from a review of literature data on vaporization enthalpies for several classes of substances, the conclusion may be drawn that the empty volume of a molecule

Table IX. Molar Volumes (V_2°) of Pure Substances, Partial Molar Volumes (\overline{v}_2) in Dilute Sulfolane Solutions at 303.16 K, and Ratios (r and R) for C_2 - C_5 Normal and Branched Nitriles

substance	$V_2^{\circ}/$ cm ³ mol ⁻¹)	$\overline{v}_2/$ (cm ³ mol ⁻¹)	r ^a ,b	R ^c
CH ₃ CN	53.239 (9)	51.94	0.94	0.97,
CH,CH,CN	71.387 (23)	69.70	0.94	0.97
$CH_{3}(CH_{2})_{2}CN$	88.418 (23)	86.01	0.94	0.96,
$CH_{3}(CH_{2}),CN$	105.190 (<i>23</i>)	102.16	0.93	0.96
(CH ₃) ₂ CHCN	90.921 (26)	86.90	(0.90 ³)	(0.94)
(CH ₃) ₃ CCN	110.551 (<i>26</i>)	103.84	(0.87)	(0.92,)

^a $r = (v_2 - v_w)/(V_2^{\circ} - v_w)$. The scarcely noticeable, if any, change of v_w with temperature has been disregarded in the calculations. ^b Data in parentheses refer to calculations with Bondi's v_w values. ^c $R = r(V_2^{\circ}/v_2)$.

amounts to 50% of the total volume, V_2° , at the boiling point, T_B : therefore, at T_B , eq 3 reduces to

$$\Delta H_{v}^{T_{B}} = K \tag{4}$$

Hence, we may derive from eq 3 and 4 the expression

$$\Delta H_{v}^{T} = \Delta H_{v}^{T} e(v_{w}/v_{e})$$
⁽⁵⁾

and hence

$$\mathbf{v}_{w} = V_{2}^{\circ, T} / (1 + \Delta H_{v}^{T_{B}} / \Delta H_{v}^{T})$$
(6)

Equation 6 allows us to calculate the van der Waals volumes of molecules from thermal data only.

The calculated values of v_w for all normal C_2-C_5 nitriles are compared in Table VIII with Bondi's data. The deviations between the two series of data in no case exceed 0.6 cm³ mol⁻¹; although the agreement may be judged satisfactory, nevertheless we would think that our own values, which are drawn directly from experimental data of ΔH_v^T , reflect more faithfully the real energetic situation of the molecule; for example, Bondi's value for CH₃CN does not take into account, doubtless, the inductive effect of CH₃ toward the -C⁺=N⁻: group (it should be responsible for the observed decrease in the dipole moment of the molecule with respect to higher members of the nitrile series).

Data on vaporization enthalpy, at $T_{\rm B}$, for branched nitriles are lacking in the literature; therefore, we could not apply our method in calculating $v_{\rm w}$ for branched nitriles.

thod in calculating v_w for branched nitriles. Data in Table IX (V_2° , \bar{v}_2 , and v_w) allow the empty volumes of nitriles in the absence ($V_2^{\circ} - v_w$) and in the presence ($\bar{v}_2 - v_w$) of sulfolane at 303.16 K to be calculated.

Then the ratio $(\bar{v}_2 - v_w)/(V_2^\circ - v_w) = r$ may be indicated as a valid criterium for calculating the relative extent of solute-solvent and solute-solute interactions and, on the whole, characterizing the solvent as structure making or breaking.

In Table IX the ratio, normalized to the effective volumes V_2° and \bar{v}_2 , is also reported: $r(V_2^{\circ}/\bar{v}_2) = R$.

The magnitudes of the two parameters r and R for all nitriles studied, noticeably close to unity, supply further evidence for our previous (7, 10, 23–26) statement of the role of sulfolane as an almost inert diluent. The observed regularities (Table IX and Figure 1), concerning the behavior of V_2° and \bar{v}_2 as a function of the number of CH₂ groups in nitrile molecules, would prompt us to enter into a discussion on the suitability of one or another theory, based on group-contribution models, in interpretating experimental data. Moreover, our measurements were carried out at 303.16 K, as reported above, whereas most of the literature data on the subject refer to measurements, on aqueous solutions, at 298.16 K. Therefore, we think that, for a more detailed discussion and a more complete and selfconsistent review of literature data, for the sake of comparison, measurements on dilute aqueous nitrile solutions are needed, at 298.16 K, which will be the subject of the next paper.

Acknowledgment

We are indebted to Luigi Lisbo Parrella for technical assistance.

Registry No. Sulfolane, 126-33-0; acetonitrile, 75-05-8; propionitrile, 107-12-0; butyronitrile, 109-74-0; valeronitrile, 110-59-8; 2-methylpropionitrile, 78-82-0; 2,2-dimethylpropionitrile, 630-18-2.

Literature Cited

- Friedman, M. E.; Sheraga, H. A. J. Phys. Chem. 1965, 69, 3795.
 Brower, K. R.; Peslak, S.; Elrod, J. J. Phys. Chem. 1969, 73, 207.
 Benson, S. W.; Buss, J. H. J. Chem. Phys. 1958, 29, 546.
 Franks, F.; Smith, I. H. J. Chem. Soc., Faraday Trans. 2 1967, 63, 2586.
- Wen, W. Y.; Saito, S. J. Phys. Chem. 1964, 68, 3693.
- (6) Conway, B. E. Ann. Phys. Chem. 1964, 68, 2639.
 (7) Jannelli, L.; Sacco, A. J. Chem. Thermodyn. 1972, 4, 715.
 (8) Jannelli, L.; Sacco, A.; Rakshit, A. K. Z. Naturforsch. 1974, 24, 355.

- (9) Jannelli, L.; Lopez, A.; Saiello, S. J. Chem. Eng. Data **1980**, 25, 259. (10) Jannelli, L.; Lopez, A.; Jalenti, R.; Silvestri, S. J. Chem. Eng. Data
- 1982, 27, 28. (11) Della Monica, M.; Jannelli, L.; Lamanna, U. J. Phys. Chem. 1988, 72,
- 1068 (12) Sclacovelli, O.; Jannelli, L.; Della Monica, A. Gazz. Chim. Ital. 1968,
- 98.936.
- (13) King, E. J. J. Phys. Chem. 1989, 73, 1220.
 (14) Edward, J. T.; Farrell, P. G. Can. J. Chem. 1975, 53, 2965.
 (15) Terasawa, S.; Itsuki, H.; Arakawa, S. J. Phys. Chem. 1975, 79,
- 2345. (16) Edward, J. T.; Farrell, P. G.; Shahidi, F. J. Chem. Soc., Faraday
- Trans. 2 1977, 73, 705, 715. (17) Nitta, T.; Turek, E. A.; Greenkorn, R. A.; Chao, K. C. AIChE J 1977, 23, 144.

- (18) Bondi, A. J. Phys. Chem. 1954, 58, 929.
 (19) Bondi, A. J. Phys. Chem. 1964, 68, 441.
 (20) Bondi, A. "Physical Properties of Crystals, Liquids and Glasses"; Wiley: New York, 1968, Chapter 14. (21) Edward, J. T. J. Chem. Educ. 1970, 47, 261.
 (22) Kitaigorodskii, A. J.; Muink, Y. D. Sov. Phys—Dokl. (Engl. Transl.)
- 1958, 3, 707. (23) Lopez, A.; Jannelli, L.; Silvestri, S. J. Chem. Eng. Data 1982, 27,
- 183. (24) Jannelli, L.; Lopez, A.; Silvestri, S. J. Chem. Eng. Data 1983, 28, 166.
- (25) Lopez, A.; Pansini, M.; Jannelli, L. J. Chem. Eng. Data 1983, 28, 173.
- (26) Lopez, A.; Jannell, L.; Pansini, M. J. Chem. Eng. Data 1983, 28, 176.
 (27) Riddick, A. J.; Bunger, W. B. "Organic Solvents", 3rd ed.; Wiley-Inter-
- science: New York, 1970. (28) Davies, M. J. Chem. Soc., Faraday Trans. 1982, 58, 1705. (29) Martinmaa, J. "The Chemistry of Nonaqueous Solvents"; Lagowski, J. J., Ed.; Academic Press: New York, 1976; Vol. IV, Chapter 7, p 253.
- (30) Howard, P. B.; Wadsö, I. Acta Chem. Scand. 1970, 24, 145 (31) Ducros, M.; Gruson, J. F.; Sannier, H. Thermochim. Acta 1980, 36,
- 39
- (32) Jalenti, R.; Lopez, A.; Azzi, A. Thermochim. Acta 1980, 35, 315.

Received for review April 4, 1983. Accepted November 28, 1983.

Partial Molar Volumes of $C_2 - C_6$ *n*-Alkanenitriles and Octanenitrile in **Dilute Aqueous Solutions at 298.16 K**

Liliana Jannelli.* Michele Pansini, and Roberto Jalenti

Thermodynamics Section, The Institute of Chemistry, Faculty of Engineering, The University of Naples, Naples, Italy

Partial molar volumes, \bar{v}_2 , of acetonitrile, propionitrile, butyronitrile, valeronitrile, and hexane- and octanenitriles were measured in dilute aqueous solutions, at 298.16 K. Experimental data were correlated to van der Waais volumes, vw, calculated from thermal data. Equations of the kind $V = av_w + b$ ($a \simeq 1.55$) were found to be suitable in reproducing both volumes of pure substances and partial molar volumes of solutes in dilute solutions within the limits of experimental errors. The above correlation may be interpreted in terms of an impenetrable volume larger than v_w , presumably because of intrinsic geometrical factors, which result in reducing the empty volume involved in interactions. Data on nitriles are analyzed in the light of current theories based on group-contribution models.

Introduction

In a previous note (1) we presented data on partial molar volumes, \bar{v}_2 , of normal and branched C₂-C₅ alkanenitriles in dilute sulfolane solutions, at 303.16 K. Some regularities were observed concerning the CH₂ and CH₃ group contributions both to volume V_2° of pure nitriles and to \bar{v}_2 of nitriles as solutes, as expected.

Furthermore, on the basis of the supposition that only the empty volume of a molecule, v_{e} ($\simeq V^{o} - v_{w}$, to first approximation), could be modified by interactions of any kind, we calculated the van der Waals volumes, vw, from thermal data by means of an improved method proposed by one of us (2).

We suggested as well a possible criterion for evaluating the relative extent of solute-solvent interactions and solute-solute interactions and hence for classifying the solvent as structure making or breaking. We preferred however, at that time, not to enter into a discussion on the suitability of one or another of current theories (3-5) based on group-contribution models. We proposed the interpretation of experimental data, after the completion of the picture of nitrile series behavior by means of analogous measurements on aqueous solutions. This is the subject of the present note.

Experimental Section

Conductivity water was obtained by repeated distillations over KMnO₄ after passage through a mixed-bed ion-exchange-resin column. The conductance of samples collected and stored after degassing, in all-Pyrex glassware, routinely ranged between 0.4 \times 10⁻⁶ and 1 \times 10⁻⁶ Ω^{-1} cm⁻¹.

C2-C5 n-Alkanenitriles (J. T. Baker Chemical Co.) were purified as reported previously (6). Hexane- and octanenitriles (Aldrich Chemical Co.) were purified by repeated distillation over P₂O₅.

The properties (density, dielectric constants, melting points) of the samples agreed with the most reliable literature data (7).

Solutions were made by weight (reduced to mass) and stored in dark containers. In the case of octanenitrile, because of its